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Abstract. Ensemble techniques combine the predictions of a set of clas-
sifiers to obtain a resulting classifier that outperforms every one of them
alone. The predictive quality of the ensembles is due to variability in
the classifiers. Such variability has been demonstrated as a key factor
in the success of ensemble techniques. In fact, known stable classifiers,
such as those based on nearest neighbors, are not improved by the tech-
nique due to their stability with respect to resampling. In this paper,
we propose an adaptive graph-based k-nearest neighbor algorithm that
iteratively produces an adaptive k-nn network (k-nearest neighbor net-
work), G(V,E), where, V is the set of all training instances and E is a
subset of all possible edges in the k-nn network from training data with
a given k = kmax. In G, for each vertex, the number of edges depends
on how difficult the vertex classification is, i.e., instead of using a single
value of k for construction of G, the values of k range from 1 up to kmax.
In this method, the k-nn network produced in iteration i, Gi, is given
as a model to the learning algorithm in the following iteration (i + 1).
The learning algorithm uses the current network together with a graph-
based classifier for building the next network, iteratively changing the
distribution of the connections. Misclassified vertices in the iteration i
have their degrees increased (up to reach kmax). The resulting classifier
behaves like an adaptive k-nn since for different regions of the training
data, a different value of k is set. Experimental evaluation shows that the
proposed technique performed as well or significantly better than other
state of the art methods tested, even when compared with ensembles of
them.
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1 Introduction

When people have to make a difficult decision, they usually prefer to take into
account opinions of several experts than consider the opinion of just one assessor.
In machine learning, a model induced by a learning algorithm can be regarded
as an expert opinion (depending on the quality of the training data and if the
algorithm is appropriate for the problem under study). An obvious approach
to obtain more reliable decisions is to combine the output of different models.
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That is the main idea behind ensembles technique [20]. An ensemble is a set of
classifiers whose individual predictions are combined in some way (typically by
voting) to classify new examples.

Ensembles Techniques are an active area of research in supervised learning
with successful application in many fields, such as finance [13], bioinformatics
[24], manufacturing [16], and image retrieval [14]. The main finding in those
researches is that ensembles are generally more accurate than the individual
classifiers that originated them [6].

A particularly interesting research field in voting classifiers is related to the
use of ensembles of k-nearest neighbor (k-nn) classifiers [1]. For example, [10]
constructed an ensemble of k-nn classifiers using cross-validated committees and
[28] developed an approach to apply bagging to k-nn using Minkowsky distance.
Additionally, [9] developed an approach using boosting and projections with k-
nn classifiers. It was shown that k-nn classifier with bagging methods are not
effective [3]. The reason is that k-nn is fairly stable with respect to resampling.
Hence, ensemble techniques often fail in their attempt to improve the perfor-
mance of k-nn classifiers [9].

To tackle with the above mentioned problem we propose a technique with a
learning phase where an iterative strategy, similar to the AdaBoost [8], produces
a model based on an adaptive k-nn network. There are two main differences
from AdaBoost, (i) instead of using an ensemble of all classifiers induced, we
use use only one model (network) induced from all networks produced during
the training process, (ii) instead of changing the example distribution along the
iterations we change the link distribution. The model induced is an adaptive
k-nn network, G(V,E), where, V is the set of all training instances and E is a
subset of all possible edges from the k-nn network generated with the training
data setting k = kmax. In k-nn networks, the parameter k is used to specify
the number of neighboring vertices to connect. In the proposed adaptive k-nn
network, G, for each vertex, the number of edges varies depending on how dif-
ficult the vertex classification is. Hence, instead of using a single value of k for
constructing G, the value of k vary from 1 up to a given kmax. In this method,
the k-nn network produced in iteration i is given as a model to the learning algo-
rithm in the following iteration (i+ 1). The learning algorithm uses the current
network together with a graph-based classifier (which considers only the links
for classification purposes) for building the next network, iteratively changing
the distribution of the connections. Misclassified vertices in a previous iteration
have their degrees increased (up to kmax). In summary, our main goal is to de-
velop a classification technique based on adaptive k-nn networks to improve the
performance of k-nn classifiers.

Preliminary results on sixty-six data sets (22 original datasets from UCI-
repository [25] plus 44 versions of them with noise addition) comparing our
proposal with other well-known classifiers (k-nn, Naive Bayes [12], C4.5 [21] and
SVM with SMO [19]) show that the proposed algorithm achieves the top rank
using the Demšar’s method [4] for comparing classifiers. In addition, we compare
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the propose algorithm with the adaptive k-nn (adaNN) technique proposed by
[23].

The remainder of the paper is organized as follows. Section 2 describes some
concepts on neighborhood-based networks and propositional boosting. Section
3 describes the proposal algorithm (Graph-Based Adaptive k-nn). Experiments
are presented in Section 4. Then, Section 5 presents discussion of experiments,
and the last section shows conclusions and future works.

2 Related Work

Two approaches related with adaptive k-nn can be identified in the literature.
The first estimates best values of k for a neighborhood or regions, and the
second estimates a value of k for each new instance. Locally adaptive near-
est neighbor algorithms [5] are representatives of the first approach. These al-
gorithms select a value k for certain neighborhoods considering three strate-
gies: localk − nnunrestricted, localk − nnclass, and localk − nncluster. In the
localk−nnunrestricted algorithm, for each training example it stores a list of val-
ues k that correctly classify that example under leave-one-out cross validation.
To classify a new instance x, M nearest neighbors of this query are computed
and is determined a k (kM,x) which correctly classifies most of these M neigh-
bors. Then, the instance x is classified with the class of the majority of its kM,x

neighbors. In the localk− nnclass, it determines a k for each output class which
classify correctly most instances of each class. Lets consider an example of 2
classes, c1 and c2. An instance x will be assigned to class c1, if the percentage
of the k1 nearest neighbors of x that belong to class c1 is larger than the per-
centage of the k2 nearest neighbors of x that belong to class c2. On the contrary,
x is assigned to class c2. Finally, in localk − nncluster, it defines clusters in the
training data. Then, for each cluster a k value is defined. Each new example is
classified using the value of k assigned for its cluster.

In another work, [27] uses the idea of confidence measure to partition the
feature space into a set of prototype regions. For each region is assigned a value
of k to classify new instances. Furthermore, [17] considers concepts of Laplacian
eigenmaps, kernel mixtures and non-linear feature extraction to improve large-
margin k-nn classification. It employs a distance function to transform the feature
space. In this new feature space, instances of the same class are grouped together
and its distances are decreased, while the distances for instances of different
classes are increased. [26] finds k nearest neighbors in a small hyperball. To
estimate the hyperball, it starts with a radius rmin which increases to an effective
radius refective to classify new instances.

Among representatives of the second approach there are the following tech-
niques. The algorithm (adaNN ) [23] finds a suitable value of k for each test
example. First, for each training instance it estimates and stores its optimal k.
Then, to classify a new instance x, (1) it finds the nearest neighbor of x (nn); (2)
determines the optimal k (ok) for nn and (3) classifies x based on its ok near-
est neighbors. Another approach considers the nearest neighbors of an instance
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as an item of evidence [30]. It uses a dempster-shaffer theory and basic belief
assignment defined as a function of distance/weight between the instance and
its nearest neighbors. Using this information, it estimates a value of k for each
training instance. The classification phase is done as in [23].

3 An Adaptive Graph-Based K-Nearest Neighbor
Classifier

In this section, we present an adaptive k-nn algorithm (A − knn) based on
an adaptive k-nn network and in a graph-based boosting algorithm. Its main
purpose is to improve the k−nn algorithm by mapping the propositional boosting
technique [8] into a graph-based one.

A network is a structure G(V,E), where V is a nonempty set of objects called
vertices and A is a set of unordered pairs of V , called edges. Such formalism in
general is applied to networked data. Nonetheless, propositional data can be
transformed to enable the use of the network formalism. One way to handle an
attribute-value table by using the network formalism is to construct a network
based on similarity relation between vertices using the training data. The mostly
studied approaches for building networks from propositional data are based on
neighborhood relationships, the basic ones is k-nn networks [29]. In k-nn net-
works, the parameter k is used to specify the number of neighboring vertices to
connect. Any vertex vi connects with its k nearest neighbors using a directed
edge.

The rationale behind the proposed adaptive k-nn network is to change the link
distribution of the k-nn network according to how difficult is the classification
of the vertices . The degree of a vertex (its number of links) is modified in a way
similar to what is done with examples distribution by the AdaBoost algorithm
in the propositional scenario. The degree of hard vertex increases and of easy
one decreases. Hence, in our approach, the final model corresponds to a k-nn
capable of using different values of k for different regions of the data space. For
example, Fig. 1 illustrates the changes in the connection distribution during 3
iterations of a k-nn network (Fig. 1(a), 1(b), and 1(c)) generated from the well
known dataset balance [25]. The networks are plotted using a version of the
multidimensional projection tool PEx [18], for graph visualization. Such dataset
has 3 classes, two of them easy classes (represented by red and blue circles) and
a hard one (represented by green circles). The circle size represents the degree of
a vertex. Fig. 1(d) does not show the edges in order to keep the figure as clean
as possible. This figure shows how the hard examples (green circles intertwined
between the other classes) become larger (more links) along iterations.

The A-Knn algorithm consists in two phases: the learning and classification
phases. The learning phase, as presented in Fig. 2 and Algorithm 1, can be
summarized in the following steps: (i) building a k-nn network G′(V,E) from
the training data, setting the value of k to kmax. Actually, this network provides
the set of all possible edges E which can used in the final network G(V,Efinal),
Efinal ∈ E. After that, (ii) using V and E, iteratively build k-nn networks (k
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(a) (b) (c) (d)

Fig. 1. Progress of link distribution in the dataset Balance. (a) Iteration 1. (b) Iteration
2. (c) Iteration 3. (d) Final Iteration.

raging from 1 to kmax, with increments of two). In each iteration, all examples are
classified using the current network and a graph-based classifier based on weights
(wvrn) [15] (using the same weight for all edges). The misclassified examples
have their number of connections increased, changing the link distribution of the
current network. When a misclassification occurs, the idea is keep trying greater
values of k until the instance is correctly classified or kmax is reached.

We observe that, by varying k from 0 to kmax (as illustrated in Fig. 3),
three cases arise: (a) a vertex classification can be changed from the state 0
(misclassified or unclassified) to 1 (correctly classified, when k = ka) and later
go back to state 0 (when k = kc); (b) classification is kept in the state 1, after a
k = kb; or (c) kept in state 0. Hence, in cases (a) and (b) we may select any value
of k that leads to state 1 for every vertex in the final network, and for (c) does
not matter the value of k. This is, the appropriate values of k for the vertices in
G(V,Efinal), in the experiments described in the next section, are computed by
(ka + kc)/2, (kb + kmax)/2, kmax for each case, respectively.

In the classification phase, as summarized in Algorithm 2, using the final
network, firstly, we find the nearest neighbor (vj) of the test instance; secondly,
considering the number of edges of the nearest neighbor, kj , we classify the test
instance looking at its kj nearest neighbors. Notice the class of vj is not taken
into consideration. We are interested in apply the new connections produced in
the learning phase, i.e., when an instance was difficult to classify its distribu-
tion of connections was changed in the hope the new links would convey new
information.

4 Results

In this section we present classification results achieved by A-Knn on real data
sets. We also compare the A-Knn with well-known classifiers. Specifically, this
section presents three evaluation settings, the first compares the proposed method
with stand-alone versions of the selected classifiers, the second with ensemble ver-
sions of those classifiers, and the third with the adaNN algorithm (with k = 51).
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Input :
– data // data set used for train the classifier.

– classifier // base classifier.

– kmax // maximum number of neighbors per instance.

Output :

– classifier f // final graph-based classifier.

Algorithm:
G′ ←Create a k-nn network using k = kmax
matInd← Create a network with k = 1
for i← 1 to size(data) do

Di ← 1 // degree of vertex i

statesi ← 0
end
nit← kmax/2
// number of iterations.

for i← 1 to nit do
classifier ← train classifier(classifier,data)
(d, states)← update link distribution(classifier,data,D,states) // as

explained in Section 3

matInd← Create Graph(data,d,pG)
if matInd doesn’t change then

Break
end

end
classifier f ← CreateFinalClassifier(classifier,states) // according to Fig.

3

return classifier f

Algorithm 1: Training Phase.

Input :
– test instance // instance to classify.

– classifier // classifier generated on training process.

Output :

– class // class predicted.

Algorithm:
nn← Find the nearest Neighbor of test instance
k ← Get the number of connections of nn
class← Classify test instance using k neighbors
return class

Algorithm 2: Classification Phase.
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Fig. 2. Learning Phase. Gray and white circles represent different classes in the exam-
ples.

In the experiments, the Euclidean distance was adopted to compute similarity
measure and we set kmax = 51 in the A-Knn algorithm. Preliminary results
showed that in average the prediction performance does not significantly in-
creases with kmax greater than this value.

The classifiers employed in the two first settings were: K-Nearest Neighbor
(k-nn), with values of k from {1, 3, 5, 7, 9, 15, 20, 30, 40}, decision tree C4.5 [21],
Naive Bayes [12], and Support Vector Machine (SVM) using the Sequential Min-
imum Optimization (SMO) algorithm [19]. We used the implementations avail-
able in WEKA [11] and their default parameters for each classification algorithm.

The tests were carried out on twenty-two data sets from the UCI-repository
[25] presented in Table 1. The results, for each algorithm, were obtained through
an average of a ten runs of 10-fold stratified cross-validation process. Further-
more, from each one of these twenty-two data sets were produced two new data
sets with different levels of noise, by randomly changing the classes at 5% and
10 % of the training data, respectivelly. The adition of noise was stratified ac-
cording to each class frequency in each dataset. The number of data sets and
algorithms total 66 and 14, respectivelly. To simplify understanging, we sumarize
the results in a boxplot visualization [2] (Fig. 4(a) and Fig. 4(b)) and in Table 2.
Table 2 compares the proposal A− knn with the other algorithms. It was used
the Bonferroni-Dunn test from [4] to determine statistical difference between any
pair of classifiers. It was used a confidence level at p =0.05 and 4 represents a
significant difference and − represents no significant difference between the pair
of algorithms.

In order to analyze the results, we employed the Demšar’s method [4] to
compare multiple classifiers over multiple data sets. This method assigns a rank
to each algorithm on each data set according to its classification accuracy. The
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Fig. 3. Possible values of k adopted in the final classifier for a given vertex.
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Fig. 4. Fig 4(a). Comparative results between the proposed A-Knn (a) and k-nn
(k=1(b), 3(c), 5(d), 7(e), 9(f), 15(g), 20(h), 30(i) and 40(j)), Naive Bayes (k), j48
(l), svm (m) e adaNN (n) through twenty-two data sets, each of them with two levels
of noise. and Fig 4(b). Comparative results between the proposed A-Knn (a) and the
boosting versions of k-nn (k=1(b), 3(c), 5(d), 7(e), 9(f), 15(g), 20(h), 30(i) and 40(j)),
Naive Bayes (k), j48 (l), svm (m) through twenty-two data sets, each of them with two
levels of noise.

best algorithm gets rank of 1, the second rank 2, and so on. In case of ties,
averaged ranks are assigned. Then, the average accuracy for each algorithm was
computed which is used in the Friedman test.
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Table 1. Domains Specifications.

Domain # Cases # Attributes # Classes

balance (ba) 625 4 3

blood (bl) 748 4 2

breast tissue (bt) 106 9 6

ecoli (ec) 336 7 8

glass (ga) 214 9 6

Hayes-Roth (hr) 132 5 3

heart-statlog (hs) 270 13 2

ionosphere (io) 351 34 2

iris (ir) 150 4 3

libras (li) 360 90 15

pima diabetes (pd) 768 8 2

segment (se) 2310 19 7

sonar (so) 208 60 2

statlog (st) 94 18 4

teaching (te) 151 5 3

vehicle (ve) 846 18 4

vowel (vo) 990 11 11

wine (wi) 178 13 3

wine-q-red (wqr) 1599 11 6

w-breast-cancer (wbc) 699 9 2

yeast (ye) 1484 8 10

zoo (zo) 101 16 7

Friedman test uses the F-distribution to calculate a critical value in order to
reject the null-hypothesis under a defined confidence level at p <0.05. Consider
N the number of data sets and K the number of tested algorithms. In the first
study case (comparing the proposed method with k-nn), N = 66, K = 10,
thus, the critical value for our experiment is CV ≈ 1.8959. Any result with the
Friedman test higher than this critical value rejects the null-hypothesis. In our
experiment, the value of the Friedman test is Ff = 7.4733, so the null-hypothesis
is rejected, thus the studied algorithms are not equivalent.

Following with a post-hoc test, we compare the performance of the proposed
algorithm with the others. For that, we use the Bonferroni-Dunn test as men-
tioned in [4]. This test consists of comparing a control algorithm (in this case the
proposed algorithm). Additionally, it uses a Critical Difference measure (CD)
with a given significance level. Any difference between two pair of algorithms
higher than CD shows that they are significantly different. In this case, we use a
significance level of α = 0.05, thus the critical difference is CD ≈ 1.4615. Finally,
Table 2 presents the comparative study with the proposed algorithm.

Table 2. Comparison of algorithms using the Bonferroni-Dunn test.

alone versions

k-nn k=1 k=3 k=5 k=7 k=9 k=15 k=20 k=30 k=40 NB C4.5 SVM adaNN

proposal - 4 - - - - - 4 4 4 - - -

Boosting versions

k-nn k=1 k=3 k=5 k=7 k=9 k=15 k=20 k=30 k=40

proposal - 4 4 4 4 - - 4 4
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The second experiment compares our algorithm with Naive Bayes, C4.5 and
SVM. We calculated the values of N = 66, K = 4, CV ≈ 2.6509, Ff = 4.1648
and CD ≈ 0.538. Hence, the algorithms are not equivalent. In addition, Table 2
presents the significant difference comparing them with our method.

We also carried out experiments comparing our algorithm with ensemble
(boosting) of the classifiers. We compare with k-nn versions (k=1, 3, 5, 7, 9, 15,
20, 30 and 40). First, we calculated the values of N = 66, K = 10, CV ≈ 1.8959,
Ff = 6.1228 and CD ≈ 1.4615. So, the studied algorithms are not equivalent.
Table 2 presents the significant difference comparing with our method. Also, in
the fourth experiment we compare with Naive Bayes, C4.5 and SVM. First of
all, we calculated the values of N = 66, K = 4, CV ≈ 2.6509, Ff = 1.3962 and
CD ≈ 0.538. So, the studied algorithms are equivalent (there is no significant
difference between these methods).

Finally, Table 2 presents results comparing the proposed A − knn with the
algorithm adaNN . It was used the Wilcoxon test from [4] to determine statistical
difference between the two classifiers. In this experiment, it was used a confidence
level of α = 0.05 and the algorithms did not present statistical difference.

5 Discussion

The relational boosting proposed performs as well or significantly better than
the other methods tested, even when compared with ensembles of them.

As posed by Schapire [22], “the final classifier produced by AdaBoost when
used, for instance, with a decision-tree base learning algorithm, can be ex-
tremely complex and difficult to comprehend. With greater care, a more human-
understandable final classifier can be obtained using boosting.”. On the other
hand, when visualizing the final network of our graph-based boosting we clearly
realize the hard examples, as one can see in Fig. 1(d).

The performance of boosting is clearly dependent on the data and the base
learner and can fail to perform well given insufficient data, overly complex base
classifiers or base classifiers that are too weak as stated by Schapire [22]. There-
fore, we see the need to test our method with other base classifiers.

It is interesting to note, as stated by Dietterich, that boosting seems to be
especially susceptible to noise [7]. That is, when the number of outliers or noise
is very large, the focus on the hard examples can become detrimental to the
performance of AdaBoost. Our experiment, however, shows a good performance
of the proposed approach on noisy data.

6 Conclusions

In this paper we present a graph-based adaptive k-nn algorithm which incorpo-
rates a relational boosting method in its learning phase. The experimental results
indicate that the proposed algorithm improves the k-nn classification accuracy
and performed as well or significantly better than the other methods tested,
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even with ensembles of them. In addition, it shows equivalent results to other
adaptive-knn approach (adaNN). Furthermore, the visualization of outputs of
the graph-based boosting technique sheds lights on data understanding and hard
examples detection.

Further work includes adapting and testing the proposed algorithm for net-
worked data. In this case, the parameter kmax is not necessary, because we can
consider all available edges in the network. Additionally, other relational base
classifiers will be tested.
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