Image retrieval with mixed initiative and multimodal feedback

Computer vision apps serve a variety of user needs: for example, they can automatically count
calories [12], summarize vacation footage [20], “paint” [4], or help users find shoes they want to buy [9]
via image search. While for calorie-counting or machine-painting the interaction between the user and
the machine is limited to submitting a photograph, for image search the user needs to communicate with
the system in a more fine-grained and unrestricted fashion, since success is defined by whether the system
successfully “guessed” what the user wanted to find. A person can look for online shopping options on
products they saw in a store, or even try to find a criminal they saw in an online database. The user’s
mental concept of what they wish to retrieve can be arbitrarily subtle hence difficult to capture, and in
order to ensure that the system’s model of the user’s search concept is accurate, the user needs to be
able to “explain” to the system how it should adjust its predictions.

Prior work has tackled this challenge in a number of ways. Some work has used semantic visual
attributes (like “shiny” or “chubby”) [2, 9, 11, 13] to allow the user to give precise language-based
guidance to the system. Attributes provide an excellent channel for communication because humans
naturally explain the world to each other with adjective-driven descriptions. Attributes have been shown
promising as a tool for image search [5, 9, 10, 14, 17, 21]. For example, [9] show how a user can perform
rich relevance feedback by specifying how the attributes of a results image should change to better match
the user’s target image. For example, the user might say “Show me people with longer hair than this one.”
Another approach has been to engage the user in question-answering with questions that the system
estimated are most useful [3, 7]. Thus, in prior work, the initiative for what guidance to give to the system
has been taken by either the user [8, 9, 10, 17, 21] or system [3, 7, 18] but not both. Another approach
has been to allow the user to provide visual cues for what they are looking for, e.g. by drawing a sketch
[1, 15, 22, 23]. The system can then retrieve visually similar results. Thus, the user can use either language
or visuals to search, but it is not clear which modality is more informative.

In our work, we propose a framework where either the user or system can drive the interaction,
and the input modality can be either textual or visual, depending on what seems most beneficial at any
point in time. For example, the user can kick off the search using a sketch, then refine the results by
explaining how the top retrieved images at a certain iteration differ from her mental model. Then the
system might ask attribute-based questions, and give control back to the user when it runs out of
informative questions to ask, so the user can provide some more free-form attribute feedback of her
choosing. Since it is the system that must rank the results, we propose to leave the choice of what is most
informative to the system. In other words, the system can decide to let the user lead and explore, if it
cannot exploit any relevant information in a certain iteration. The system can request that the user
provides multimodal feedback, i.e. textual or visual feedback. To make all these decisions, we train a
reinforcement learning (RL) agent.
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Figure 1. Available actions for our reinforcement learning agent.
In particular, the options that the reinforcement learning chooses between are: (1) sketch
feedback, (2) free-form attribute feedback, or (3) system-chosen attribute questions, as shown in Figure
1. At each iteration, the system adaptively chooses one of these interactions and asks the user to provide



the corresponding type of feedback (e.g. it asks the user to choose an image and attribute to comment

on). Our agent receives a state composed of top result images, proxies for the target image, and history

of taken actions, when available. It interacts with the environment trying different actions. Over time, it
learns to pick the most meaningful action, given a certain state. We guide our agent with information
about whether the target image is among our top results.

For our experimental evaluation, we compare our RL agent on three datasets: Pubfig, Scenes and

Shoes with three different baselines on ten iterations of feedback in Figure 2. We report percentile rank

of the target image, defined as the fraction of database images ranked lower than the target (in the range

[0, 1], higher is better). The three employed baselines are:

*  Whittle Search [9] (WS): In each iteration, users select a (reference image, attribute) and compare
target and reference images for the chosen attribute (“more / less / equally”). The relevance of
database images which satisfy this feedback increases.

e Pivot round-robin [7] (PRR): In each iteration, PRR provides a (reference image, attribute) pair and
users select a more / less / equally response.

e Sketch retrieval [22] + Pivot round robin [7] (SK_PRR): In the first iteration, we ask for a sketch. In later
iterations, the system follows the pivot round-robin strategy. Sketches are simulated with edge maps
[19]. They are converted to photographs using a GAN [6], and rank database images by their similarity
to the target image, using the probabilities from a one-class SVM [16].
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Figure 2. Percentile rank plots for Pubfig, Scenes, and Shoes. Our mixed-initiative RL agent outperforms the other
baselines on Pubfig and Shoes, and performs competitively for Scenes.

In order to understand the success of our mixed-initiative RL agent, we count its predicted actions
per iteration in Figure 3. We observe that SK (sketch) and WS actions are mainly performed in iterations
1 and 2, because these are the exploration-like actions. Then, after iteration 3, the PRR is the most
common one. Once the most beneficial human knowledge is acquired, having a computer suggest
feedback (in the form of questions) helps reduce the search space the fastest.

100% Pubfi _ 100% Scenes 100% - Shoes

7] "] [}

Y 80% Y 80% Y 80%

c c c

g 60% = o g o

= b 5 60% 5 60%

(o) [9) (9]

(] (] (]

S 40% L o 40% S 40%

c = c

S ] S -

5 20% 5 20% 5 20%

< < <
0, 0, 0,
0/012345678910 0/012345678910 0/012345678910

Iterations (amount of feedback) Iterations (amount of feedback) Iterations (amount of feedback)
[CO PRR  EEm SK  mmm WS [ PRR  EEE SK W WS| [T PRR [N SK mmm WS

Figure 3. Percentage of actions predicted by our approach in the test set.
To conclude, from experiments in Figure 3, we find that our model prefers human-initiated
feedback in former iterations, and complements it with machine-based feedback requests (e.g. questions)
in later iterations. We outperform standard image retrieval approaches allowing faster image retrieval.
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